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Abstract. The Coherent Potential Approximation (CPA) self-consistent equation is calculated for a binary
disordered chain introducing a simple transformation. The transformation reduces the CPA equation to a
cubic polynomial whose complex roots are related to the Green function and their relation to the complex
Lyapunov exponent is also established. This solution fruitfully captures essential aspects of the well-known
anomalous scaling behaviors in a different and advantageous way. It is found that the anomalous behavior
is strongly effected by the nature of these roots. A small disorder expansion is carried out for comparison
with the previous weak disorder calculations. We found that the CPA reproduced the anomalous behavior

of the exact calculations.

PACS. 75.10.Hk Classical spin models — 78.30.Ly Disordered solids — 71.23.-k Electronic structure of

disordered solids

1 Introduction

One-dimensional disordered systems have been studied for
a long time due to their applicability to a variety of sys-
tems and the simulation can be extended to long chains
of 10® atoms. Recently experiments are available to test
some of the results obtained from the one-dimensional dis-
ordered systems. The the random microwave transmission
in a single-mode wave-guide experiment [1], the transport
studies with GaAs-AlGaAs random dimer super lattice
systems [2], and the one-dimensional photonic band-gap
structures [3] represent a few examples.

Over the years many numerical and analytical tools
were developed to study these systems. Recently, Izrailev
et al. [4] suggested classical Hamiltonian maps for the tight
binding chain model. They reproduced analytically the ex-
act calculations for the weak disorder case [16]. They also
studied the localization properties of the electronic states
of the one-dimensional Kroning-Penny model with the cor-
related random potential [5]. Heinrichs investigated the re-
lation between the random tight binding chain and the
phase and delay time distributions for continuous disor-
dered chains [6]. The variance of the Lyapunov exponent
for the random tight binding model with the Cauchy dis-
tribution has been investigated by another group lately [7].
Despite all of these efforts there is no analytical solution to
this problem for the entire range of the random potentials.

Here using the Coherent Potential Approximation
(CPA), an effective medium theory, we are able to ob-
tain a solution for the binary random potential essentially
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for the whole range of the random potential strengths
(however the CPA is only able to reproduce behavior on
the mean field level except for the weak random potential
strengths.) We have been studying low-energy excitations
in disordered magnetic and spin glass chains using nu-
merical and analytical methods [8,9]. The CPA, although
a mean field theory, is still the best tool for disordered
systems with known ground states describing the overall
spectrum qualitatively. Moreover, we have found that the
CPA reproduced the low-energy anomalous singularity in
the density of states [9]. This is surprising since a mean
field theory [10] usually cannot account the singularity
and instead averages it out. Here the CPA reproduces in a
clear and advantageous way the essential ingredients of the
anomalous behavior of the Lyapunov exponent as shown
below. A general expression for the Lyapunov exponent as
a function of energy and arbitrary potential strength is ob-
tained through the transformation introduced below. This
expression will be useful for many interesting quantities
such as transmission coefficients and conductivity [4,5].

2 The solution of the CPA equation

The CPA amounts to replacing a random environment
with an effective environment, calculated self consis-
tently [10]. The self-consistent equations are a nonlinear
and one usually needs to use computer to solve them.
An exact solution of the self-consistent equation is
possible for certain types of disorder. The behavior of the
one-dimensional disordered systems formulated in differ-
ent contexts [11] (using proper transformations [9]),
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magnetic, electronic and vibrational can be de-
scribed mathematically by the discrete, one-dimensional
Schrédinger equation given by

(B = £,V)n = Yni1 + o1, (1)

where E is energy, V is the strength of the random po-
tential and &, is equal to F1 with equal probability. The
solution below can also be extended to asymmetric dis-
tributions of the signs, which will be presented elsewhere.
The CPA self consistent equation for general case [9] is
read

V-V,

(176)1—(1/—1/;)67

— VAV 4 (9
1+(V+V.)G

where c is the probability of £, = —1. For equal probabil-
ity it takes the form

~Ve(B) + (V? = V2)G(E,V,) =0, (3)

where V. is the potential describing the behavior of the
random potential on a mean field level and is generally a
complex function of energy. This equation is also valid for
two and three dimensions with equal probability. G is the
configurationally averaged Green function given by

GEV)=[E-V.-2)(E-Ve+2)] % ()

There exists some efforts to solve this equation for the
three-dimensional case for diluted magnetic semiconduc-
tors [15] which can be achieved for a particular Green
function obtained from the semicircular density of states
and produces a disorder averaged Green function directly.
Herein is described more convenient approach where we
define a transformation that is related to the Green func-
tion and which we established in relation to the Lyapunov
exponent. This method is also applicable to the three-
dimensional case studied by reference [15] and gives the
exact solution. Now we can introduce the following trans-
formation [12]

E — V. = 2coshd, (5)

then the Green function and the self-consistent equation
take the following forms [12],

G = (2sinhe) " (6)
and using equation (5) and equation (6)
(t? — Bt +t)(t—E/2) - V?*t=0 (7)

respectively, where t = e~¢. This is a cubic polynomial
whose roots can easily be found from any standard math-
ematical handbook [13]. The coherent potential V,.(E) can
be obtained from the roots of the equation (7). Once the
coherent potential is known, various quantities can be cal-
culated: the shift in energy due to disorder, the damping
of the zero mode [12] and the line shape and the dynamic
structure factor can be calculated. One can easily show
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that the density of states is proportional to the root of
this cubic equation which is

1 t
g0 .
T 1—1§

p=- (8)

where % is the root of the cubic polynomial. If the roots
are real, then the density of states is simply zero. This
will enable the study of the gaps in the density of states
as a function of energy and of the strength of the disorder.
Generally, a cubic equation has complex roots if it holds
the condition [13]

B, V¥ +r(E, V)2 >0 (9)

which is the case here, where ¢(E,V) = 1/3 — V2/6 —
E?/12 and r(E,V) = 3EV?/8. Otherwise, all the roots
are real indicating a gap in the density of states. In the
absence of disorder, i.e., V. =V = 0, the Green function
correctly reduces to the regular form.

The solution, a function of r(E,V) and ¢(F,V), has
a cumbersome, closed form [13]. However, a weak disor-
der (small V) expansion can be made to compare with
exact calculations [16]. It also reveals fruitfully the reason
behind the anomalous power law in a different but more
insightful perspective. To do this, the complex Lyapunov
exponent is required. This can be obtained by integrat-
ing the Green function over E [17]. The real and imag-
inary part of the Lyapunov exponent are related to the
integrated density of states and the inverse localization
length, respectively.

3 The Lyapunov exponent

In this section the relation between ¢ and the Lyapunov
exponent v(E,V) is established. It was shown by refer-
ence [17] that the disorder averaged green function is re-
lated to the Lyapunov exponent which is given by

(V) = CE, V).

i (10)

Changing variables from F to ¢ and using equations (5, 6)

we obtain the following differential equation:

& 1 dv,
dé " 2sinhe do

One can obtain the coherent potential V. as a function
of ¢ by solving equations (3) namely

V. = —sinh¢ + /sinh?¢ + V2.

The Lyapunov exponent takes this form by substituting
equation (12) into equation (11)

(11)

(12)

1
d =1— —coth¢ + __ coshd
2 24/sinh2¢ + V2

o (13)
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The Lyapunov exponent is obtained by integrating equa-
tion (13) yielding

1 1 1 V2
V(E)¢+§1H<§+§\/1+m>v (14)

where the integration constant is chosen so as to produce
the regular case when the random potential’s strength
V' = 0. The Lyapunov exponent is then simply obtained by
inserting ¢, the solution of equation (7). In case V = 0,
equation (7) yields a solution (complex root) t = e~
where 6 is conveniently defined by

E = 2cosf), (15)
and the Lyapunov exponent is pure imaginary Sy = S¢ =
0 = cos*1§ which is related to the integrated density
of states (IDOS). Clearly, the inverse localization propor-
tional to Ry(E) is zero within the band E € [-2, 2] indi-
cating no disorder.

Equation (14) has the interesting consequence that one
does not need to introduce the CPA self energy with an ar-
tificial coefficient. This point is discussed in reference [19],
and the coherent potential should be divided by 2 suppos-
ing the problems related to averaging.

4 Weak disorder expansion

Analyses are carried out below for small disorder as V' — 0
and the complex root of equation (7) is used since the
real root implies that the integrated density of states is
zero, which may not be true. For positive E not equal to
the band edge value 2, using the equation (15), the self-
consistent equation (7) becomes

. . V2

(t — ) (t —e ) (t — cosh) = Tt' (16)
for small V. One can solve this equation by perturbation
methods [20] where ¢ can be expanded

t=to+ ety + ety +---, (17)

where € = VTz and for the equation (16) ty = €. We are
subsequently only concerned first order terms and thus

the solution of ¢ takes the form

2
e ? =t~ elf 17‘_/—2 .
4sin“0

Substituting this into the equation (16), the Laypunov
exponent can be written as

(18)

(19)

The real part of the above result is reproduced by refer-
ence [4] using classical maps. Derrida et al. [16] for certain

discrete energies obtained —i7 + %2 for E = 0 at the band
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center and —ig + VTQ for E = 1. These results are in good
agreement with those obtained from equation (19).

For E = 2 at the band edge, equation (16) becomes
(t —1)2 = (V?/2)t. We can again use the perturbation
method but care must be taken since we have multiple
roots [20]. In this case the expansion t = 1 + €%t ...
where a will be obtained through balancing the terms [20].
We obtain, €3t — ¢@+1t; — e = 0 for ¢;. This equation
will be balanced for & = 1/3 and then, ¢ is given by

t~ 1 + e—i27’r/3(v2/2)1/3' (20)
The Lyapunov exponent takes the form
3sinZ . 3cosZ
~ 3 1,2/3 31,2/3
v i Ve 4 E Ve, (21)

where IDOS = f%Sfy = 0.164V?/% and inverse local-

ization length Ry = 0.297V?/3. The so-called anoma-
lous power-law behavior [16] is successfully reproduced.
The coefficients are close to values given in reference [16]
which are in turn IDOS = —1Sy = 0.159V?/% and
Ry = 0.289V?/3 and which was obtained rather by com-
plex detailed analyses.

We remark here that the CPA solution clearly pre-
dicts when the anomalous scaling occurs as a function of
energy in a more insightful and clear way. Anomalous scal-
ing occurs if the polynomial equation (16) of the CPA self-
consistent equation has multiple roots. It can be checked
quite easily whether the cubic equation (7) has multi-
ple roots for V' = 0. This can be probed by setting [13]
q(E,V)3 4+ r(E,V)? = 0. This will show that at £ = 42
anomalous scaling appears. Similar anomalous scaling of
the Lyapunov exponent was also observed in chaotic bil-
liards systems [14]. Note that for the negative values of E,
the same results also hold except that the imaginary part
of the Lyapunov exponent picks up a constant term equal
to .

5 Summary and discussion

We have obtained a solution for the nonlinear, self-
consistent equation of the CPA. The solution can be ob-
tained from the roots of third order polynomials that has
a cumbersome, closed form. We have shown here that for
the weak disorder, the CPA solution correctly reduces to
the exact calculation of Derrida et al. [16]. The solution
can predict the energies at which the power law scaling
may occur. This method is also easily extendible to asym-
metric distributions of the random signs. There are con-
stant efforts to develop an understanding of the spectrum
of the one-dimensional discrete Schrodinger equation and
thus many different techniques [18,21-23] have been devel-
oped. The CPA results can be compared to equations (40)
and (50) of reference [21] where the correct anomalous
power-law was obtained with a coefficient larger by a fac-
tor of two. Using the method of [18] again a cubic poly-
nomial is obtained but one cannot produce the correct
power-law behavior. In the past using the replica method
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the Lyapunov exponent was calculated [22]. A cubic equa-
tion was also obtained which led to the 2/3 power-law
behavior but again with a coefficient twice that of the
exact one. Paladin et al. also studied this anomalous scal-
ing behavior using transfer matrix techniques where they
recover the correct power, 2/3, but with the coefficient
for the inverse localization length 0.6299 [23] almost twice
that of the exact coefficient. The CPA solution reproduces
correctly the power-law behaviors and coefficients, giv-
ing a better performance than some of the cited works
above. It proves to be a useful tool to investigate disor-
dered problems.

I would like to thank Professor D.L. Huber for helpful discus-
sions. This work is partially sponsored by the Scientific and
Technical Research Council of Turkey (TUBITAK).
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